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Abstract 24 

Numerical weather prediction centers rely on the GRIdded Binary Second Edition (GRIB2) file 25 

format to efficiently compress and disseminate model output as two-dimensional grids.  User 26 

processing time and storage requirements are high if many GRIB2 files with size O(100 MB) need 27 

to be accessed routinely. We illustrate one approach to overcome such bottlenecks by reformatting 28 

GRIB2 model output from the High-Resolution Rapid Refresh (HRRR) model of the National 29 

Centers for Environmental Prediction to a cloud-compatible file type, Zarr. The resulting data 30 

archive (HRRR-Zarr) is stored using the Amazon Web Service (AWS) Simple Storage Service 31 

(S3) and available publicly through the Amazon Sustainability Data Initiative. 32 

 33 

Currently, four file types (surface, subhourly, isobaric, and native) of HRRR output are generated 34 

for every hour of the day and forecast lead time in GRIB2 format. A HRRR GRIB2 surface file of 35 

size O(100 mb) for the contiguous United States region consists currently of 173 grids for a mix 36 

of variables and vertical levels with each grid containing 1.9 million grid points.  To simplify 37 

access to the grids in the surface files, we reorganize the HRRR model output for each variable 38 

and vertical level into O(1 MB) Zarr files containing all forecast lead times for 150 x150 grid point 39 

subdomains. Open source library routines provide efficient access to the compressed Zarr files 40 

using low-memory cloud or local computing resources. The HRRR-Zarr approach is illustrated for 41 

machine-learning type applications of sensible weather parameters, including real-time alerts for 42 

high-impact situations and retrospective access to output from 100’s-1000’s of model runs.   43 

 44 

 45 

 46 
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Significance Statement 47 

The rapid evolution of computing power and data storage have enabled numerical weather 48 

prediction forecasts to be generated faster and with more detail than ever before. The increased 49 

temporal and spatial resolution of forecast model output can force end users with finite memory 50 

and storage capabilities to make pragmatic decisions about which data to retrieve, archive, and 51 

process for their applications. We illustrate an approach to alleviate this access bottleneck for 52 

common weather analysis and forecasting applications by using the Amazon Web Services (AWS) 53 

Simple Storage Service (S3) to store output from the High-Resolution Rapid Refresh (HRRR) 54 

model in Zarr format. Zarr is a relatively new file type that is flexible, compressible, and designed 55 

to be accessed with open-source software either using cloud or local computing resources. The 56 

HRRR-Zarr dataset is publicly available as part of the AWS Sustainability Data Initiative.    57 

 58 

I. Introduction 59 

The global weather enterprise relies on millions of large, two-dimensional data fields created each 60 

day by operational numerical weather prediction (NWP) models (Benjamin et al.  2018).  The 61 

perceptions, uses, and values for that vast amount of information depend in part on its accessibility 62 

and how it is disseminated by end users (Lazo et al. 2009).  Advances in computing processing 63 

power and storage have allowed operational centers to run models at finer spatial scales and higher 64 

temporal frequency, yet only a small fraction of the information available from the models are 65 

typically available to end users (Benjamin et al. 2018). Pragmatic decisions are made by 66 

operational forecast centers in order to disseminate global and regional model output for dozens 67 

of parameters by restricting ranges and frequencies of valid times and horizontal and vertical grid 68 

spacings.  Those decisions have been heavily influenced by internal and external limitations on 69 
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storing and accessing the hundreds of gigabytes (GB) of model output generated by each model 70 

run. These challenges are not unique to the weather sector; many disciplines are struggling to 71 

overcome the “Volume, Variety, and Velocity” of data cubes (datasets in space and time) available 72 

from earth observation systems (Giuliani et al. 2020; Yao et al. 2020). Improved data cube cyber-73 

infrastructures are recognized to be needed for environmental datasets to allow the ingestion, 74 

storage, access, analysis, and use of data elements ordered by geolocation and other shared 75 

attributes (Nativi et al. 2017). 76 

 77 

The National Oceanic and Atmospheric Administration (NOAA) Big Data Program (BDP) began 78 

in 2015 to address agency-wide issues to access the tens of terabytes (TB) of observations and 79 

model output created each day within the agency (Ansari et al. 2018; NOAA 2020). With support 80 

from the NOAA BDP, the NOAA Cooperative Institute for Climate and Satellite-North Carolina 81 

(CICS-NC) has implemented a data hub architecture to facilitate transfer of key NOAA 82 

environmental datasets to infrastructure-as-a-service (IaaS) providers for data storage. This 83 

includes over 130 data streams, including such high-demand data sets as current and historical 84 

Next Generation Weather Radar (NEXRAD) products from 160 sites in the United States (Ansari 85 

et al. 2018). IaaS providers (e.g., Amazon Web Services [AWS]; Google Cloud Platform; IBM; 86 

and Microsoft Azure) have the capacity to store enormous datasets and provide public access and 87 

computing resources for end users to post-process these data streams within their IaaS environment 88 

to reduce the time and cost to access the information using cloud or local compute resources 89 

(Molthan et al. 2015; Siuta et al. 2016). 90 

 91 
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The Google Cloud Platform and AWS Simple Storage Service (S3) began providing public access 92 

during 2020 to output from the High-Resolution Rapid Refresh (HRRR) model of the National 93 

Centers for Environmental Prediction (NCEP).  The HRRR is a convection-allowing model that 94 

was developed by the Earth Systems Research Lab (ESRL) and is run operationally every hour by 95 

the NCEP’s Environmental Modeling Center. HRRR output is available for dozens of surface and 96 

upper-atmospheric variables at 3-km grid spacing for a 1.9 million grid-point domain that covers 97 

the contiguous United States (CONUS; Benjamin et al. 2016; Blaylock et al. 2017). As of July 98 

2021, the HRRR archives provided by Google and AWS are now approaching 2 petabytes (PB) in 99 

total storage and are growing at a rate of over 700 GB per day.   100 

101 

From 2016-2020, more than 1000 registered operational and research users relied on the only 102 

publicly-accessible archive of HRRR model output that was managed by researchers at the 103 

University of Utah. This archive utilized S3-type storage procedures provided by the Center for 104 

High Performance Computing (Blaylock et al. 2017; Blaylock et al. 2018). By 2020, the archive 105 

grew to over 160 TB and the ability to continue to maintain and expand the HRRR archive at the 106 

University of Utah was no longer feasible. We began exploring alternative approaches and formats 107 

to store HRRR model output for machine learning (ML) applications that currently rely on the 108 

GRIB2 model output available now from the IaaS providers. 109 

110 

International standards were established by the World Meteorological Organization (WMO) to 111 

efficiently store and disseminate NWP model output in hypercube-structured file formats with 112 

built-in compression algorithms. The GRIdded Binary Second Edition (GRIB2) format has been 113 

in use during the past several decades to archive two-dimensional files that are efficiently 114 
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compressed using a method similar to JPEG image compression (Silver and Zender 2017). While 115 

GRIB2 files effectively help store and transmit large amounts of meteorological data as two-116 

dimensional slices, they can be cumbersome to work with and rely on WMO-defined tables that 117 

are unfamiliar to users in other disciplines (Wang 2014). Many users rely on software tools to 118 

transform GRIB2 files into other self-describing formats such as netCDF (Silver and Zender 2017). 119 

Decoding the two-dimensional slices in GRIB2 format leads to expanded file sizes that contribute 120 

to inefficiencies when, for example, an end user may only be interested in certain parameters for 121 

all forecast times available from a specific model run within a local or regional subdomain. 122 

However, it is possible to access individual variables within GRIB2 files by selecting their byte 123 

range or specifying a bounding box for domain subsets, but doing so requires loading each file 124 

into memory and performing additional post-processing (Blaylock et al. 2017). 125 

 126 

Researchers generally use high-level programming environments that rely on Matlab, Interactive 127 

Data Language (IDL), or Python to examine, post-process, and visualize operational model data. 128 

For open-source languages such as Python, few libraries exist that read GRIB2 files efficiently and 129 

the hundreds of encoded variables that they contain. Data science and ML techniques applied to 130 

operational model output typically require multivariate training datasets with long periods of 131 

record for which alternative model data structures beyond GRIB2 are necessary (Vannitsem et al. 132 

2020). As summarized by McGovern et al. (2017), these big data and ML methods have been used 133 

to improve forecasts of high-impact weather parameters such as storm duration (Cintineo et al. 134 

2014), severe wind (Lagerquist 2016), large hail (Adams-Selin and Ziegler 2016), precipitation 135 

type (Reeves et al. 2014; Elmore et al. 2015) and aviation turbulence (Sharman 2016). To continue 136 

applying ML and artificial intelligence techniques to the ever-growing model output repositories, 137 
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it will be critical to have data in structures that allow for flexible dissection in space, time, and 138 

across many forecast model runs or ensemble members (McGovern et al. 2017).  139 

 140 

An alternative file format, Zarr, is described in this study as a means to archive HRRR files. Zarr 141 

is a relatively new file format, developed in 2016 for use in a Malaria genome project, which 142 

chunks and compresses N-dimensional datasets for flexible storage in memory, on disk, or within 143 

cloud platforms (Vance et al. 2019; Miles et al. 2020). The Zarr format is being used for promising 144 

ML and big data applications in other disciplines, e.g., Lyft Level 5 self-driving dataset (Houston 145 

et al. 2020), the MalariaGEN project (Pearson et al. 2019), and the Pangeo project (Eynards-146 

Bontemps et al. 2019; Signell and Pothina 2019). 147 

 148 

In the weather enterprise, the United Kingdom’s Met Office has adopted Zarr as its file storage 149 

format of choice for the over 200 TB of data produced by high-resolution NWP models each day 150 

(McCaie 2019). Additionally, Unidata developers of netCDF have extended its netcdf-c library to 151 

access Zarr data in a storage format referred to as NCZarr (Heimbigner 2021). While recognizing 152 

the potential for Zarr as a file format is of high interest, the Open Geospatial Consortium has not 153 

approved Zarr Version 2 yet as an official Community Standard 154 

(https://www.ogc.org/pressroom/pressreleases/3275).  155 

 156 

The HRRR model output in Zarr format developed in this study (hereafter HRRR-Zarr) is one 157 

approach to extract and disseminate model output intended for common ML workflows that may 158 

require specific variables from 1-1000s of model runs at specific locations. HRRR-Zarr makes it 159 

practical to access relatively small fractions of data rather than attempting to retrieve that data from 160 

https://www.ogc.org/pressroom/pressreleases/3275


8 

the original GRIB2 formatted files.  The capability to do so is possible since HRRR-Zarr formatted 161 

files are being created by our group, stored in the AWS S3 environment, and made publicly 162 

accessible as part of the AWS Sustainability Data Initiative, complementing the HRRR GRIB2 163 

model archive available there.  164 

165 

The remainder of this manuscript will be organized in the following manner. We first detail the 166 

HRRR model specifications, Zarr capabilities and limitations, and the AWS HRRR-Zarr archive 167 

structure. Next, we explore potential use cases for the HRRR-Zarr dataset, for both research or 168 

operational applications. We will detail the benefits of the HRRR-Zarr format in a general sense, 169 

as well as demonstrate its utility in analyzing a high-impact meteorological event from September 170 

2020 that included record-breaking downslope windstorms in two states, devastating wildfire 171 

spread, and an early season snowstorm. Finally, a summary and future work are presented. 172 

173 

II. Data and Methods174 

a) The High-Resolution Rapid Refresh Model175 

The High-Resolution Rapid Refresh (HRRR) is a 3-km, convection-allowing model that is run 176 

operationally by NCEP’s Environmental Modeling Center (Benjamin et al. 2016). It was 177 

developed by the Earth Systems Research Laboratory and was first run operationally September 178 

2014. The latest version of the HRRR model (version 4, deployed 2 December 2020), is initialized 179 

each hour, with hourly forecasts out to either 18 or 48 hours depending on the initialization time 180 

(Table 1). The operational HRRR domain covers the entire CONUS (Fig. 1), with a separate 181 

domain for the state of Alaska (McCorkle et al. 2018). The HRRR is nested within the larger 182 

domain of the Rapid Refresh model (RAP), from which it receives its initial and boundary 183 
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conditions for each model run. The RAP employs identical parameterization schemes, with the 184 

exception of a convection parameterization, and assimilates data using the NOAA Gridpoint 185 

Statistical Interpolation system, which was modified to include hourly radar data, boundary layer 186 

observations, and other cloud processes (Kleist et al. 2009). As discussed by McCorkle et al. 187 

(2018), the HRRR model is initialized one hour prior to its analysis time, known as a pre-forecast, 188 

in order to assimilate three-dimensional radar reflectivity data, which impacts latent heating 189 

estimations and thus the HRRR’s ability to forecast convection (James and Benjamin 2017). 190 

191 

NOAA BDP and CICS-NC staff manage the distribution of HRRR model output to IaaS 192 

providers Google and AWS. We rely on the archive and real-time HRRR GRIB2 files available 193 

publicly as part of the AWS Sustainability Data Initiative (https://registry.opendata.aws/noaa-194 

hrrr-pds/). The HRRR GRIB2 files are publicly accessible via the AWS S3 using the unique 195 

identifier “noaa-hrrr-bdp-pds”.  196 

197 

HRRR output, accessible from IaaS providers contains eight dimensions, listed below (dimensions 198 

contained in each GRIB2 file are listed in bold-face text): 199 

 File type: surface, subhourly, isobaric, native200 

 Domain: CONUS, Alaska201 

 Initialization time: hourly from 2014 to the present202 

 Forecast lead time: 15- or 60-min intervals out to 48 h203 

 Level: pressure, height, layer204 

 Variable: sensible weather parameters and many model-specific fields205 

 X-position206 
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 Y-position 207 

 208 

Table 1 summarizes the evolution of the HRRR model from its initial operational release in 2014 209 

to the present. We only post-process into Zarr format a limited amount of the output from the 210 

HRRR (Table 2). We have focused on reformatting the GRIB2 surface files as many ML use cases 211 

require surface sensible weather parameters or meteorological parameters at "standard" levels in 212 

the vertical that are stored in those GRIB2 files. At present, the volume of HRRR output in Zarr 213 

format accessible from AWS exceeds 120 TB.  214 

 215 

We focus our description regarding HRRR-Zarr files on the processing of the CONUS surface 216 

files, each of size ~140 MB, that contain 173 grids representing a mix of variables at levels in the 217 

vertical of highest interest for many applications (Table 1). Output from HRRR model runs 218 

initialized at 00, 06, 12, and 18 UTC are available hourly from the analysis time (F00) and hourly 219 

forecast lead times out to 48 h (F48). The HRRR model runs initialized at other hours of the days 220 

are available from F00-F18.   221 

 222 

The subhourly files are similar to the surface files and contain variables with output available at 223 

15-minute forecast lead times. The isobaric and native files contain meteorological variables at 224 

fixed pressure or terrain-following levels, respectively, that are most relevant for users who need 225 

the HRRR output for initial and boundary conditions to initialize high resolution forecasts or 226 

research simulations (e.g., Crosman and Horel 2017; Foster et al. 2017).  227 

 228 

 229 
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b) Zarr 230 

Zarr is a flexible file format for storing N-dimensional data arrays that are chunked (divided into 231 

subdomains) and compressed with metadata described in separate JSON-formatted files. The Zarr 232 

protocol is similar to the Hierarchical Data Format version 5 (HDF5; Delaunay et al. 2019).  Zarr 233 

files are read and written with the Zarr Python library that depends on the widely-used NumPy 234 

library (Harris et al. 2020). The Zarr format is becoming a desirable file structure for data scientists 235 

and researchers because of its seamless ability to read and write to cloud platforms. Other benefits 236 

include its library of compression options, multithreading and multiprocessing capabilities, and its 237 

backend compatibility with format-agnostic, array-manipulation Python libraries (e.g., xarray, iris, 238 

and dask).  239 

 240 

A Zarr file is initialized using Python by first defining the file store, which can be in memory, as 241 

a directory on local disk, in distributed or cloud storage, or as a zip file. Next, Zarr arrays (hereafter, 242 

zarrays) are created and filled in a similar manner to NumPy arrays by defining a data type and 243 

shape, and then assigning values and defining zarray attributes (zattrs) described in JSON files that 244 

will serve as the key references for that zarray. These zarrays can be chunked along any specified 245 

dimension and in any shape, which allows a dataset to be manipulated and stored efficiently for 246 

use in specific applications. All chunks in a zarray are uniform in shape and stored as individual 247 

objects that are identified by their integer index location in the array (e.g., row and column). The 248 

process of defining an optimal chunk structure for the HRRR-Zarr dataset is outlined in the next 249 

subsection. 250 

 251 
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Before sending the chunked zarrays to the Zarr store, they can be encoded and compressed for 252 

optimized storage. The encoding instructions are located in the json metadata for the zarray and 253 

define the data type’s byte order (little endian or big endian), character code (integer, floating 254 

point, Boolean, etc.), and the number of bytes. All data types in the NumPy array protocol are 255 

acceptable for zarray encoding. Once the encoding parameters have been defined, the zarrays can 256 

be compressed using a number of compression algorithms and data filters. The Numcodecs library 257 

was designed specifically for data storage applications like Zarr, and serves as an interface to other 258 

compressor libraries such as Blosc, Zstandard, LZ4, Zlib, and LZMA. This allows the user to 259 

choose the primary compressor, the compression algorithm, and the compression level that will 260 

perform best based on the applications of the dataset.  When choosing a compression codec and 261 

level, the user takes into consideration the potential compression ratio (Eqn. 1) and decoding speed. 262 

 263 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =  
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐷𝑎𝑡𝑎 𝑉𝑜𝑙𝑢𝑚𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝐷𝑎𝑡𝑎 𝑉𝑜𝑙𝑢𝑚𝑒
   (3.1) 264 

 265 

There exists a plethora of literature that details compression algorithm performance and 266 

benchmark test results that aid choosing appropriate compression schemes for a particular use case 267 

(Donoho 1993; Alted 2010; Almeida et al. 2014; Wang et al. 2015; Kuhn et al. 2016). In addition 268 

to choosing a compression scheme, the Numcodecs library also offers a number of data filters that 269 

can be implemented. The filter sorts the data and transforms it in a way that would streamline 270 

compression, such as shuffling bytes and bits when adjacent values in an array are correlated. The 271 

compatibility of the Zarr protocol and Numcodecs libraries allows for the configuration of an 272 

external filter for use with any chosen compressor, even if the filter is not an option by default.  273 

 274 
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c) The HRRR-Zarr Archive 275 

The HRRR-Zarr archive with the unique AWS S3 bucket identifier “hrrrzarr” is available publicly 276 

as part of the AWS Sustainability Data Initiative. That archive was designed to be relevant for 277 

users less familiar with environmental dataset formats while supporting a familiar environment for 278 

users who routinely use model output in netCDF or GRIB2 format. The HRRR-Zarr conversion 279 

workflow follows that of the United Kingdom’s Met Office Informatics Lab, where they are 280 

actively using Zarr to store large datasets (Donkers 2020). Due to the challenges that surround 281 

manipulating data cubes in various file formats, the Met Office developed the Iris Python library, 282 

a format-agnostic library for processing datasets and converting between file formats (Iris 2020). 283 

Unlike other Python libraries, Iris and its companion package, Iris-grib, were built to read data 284 

cube formats such as GRIB2 and recognize the Climate and Forecast (CF; Eaton et al. 2020) 285 

metadata conventions used in numerical model data. For this reason, the Iris libraries maintain the 286 

same metadata for the HRRR archive as relied upon for GRIB2 files.  287 

 288 

The HRRR-Zarr archive files are built using the Iris and Iris-grib libraries. HRRR-Zarr data files 289 

rely on the same self-describing metadata (keywords and CF naming scheme) as the corresponding 290 

GRIB2 files obtained from their associated index (.idx) files. As an example, consider the 291 

workflow required to process the 48 GRIB2 surface forecast files containing 173 grids from the 292 

HRRR model runs initialized at 00 UTC. (The CF names for all 173 HRRR variables are available 293 

online at https://mesowest.utah.edu/html/hrrr/zarr_documentation/html/zarr_variables.html). All 294 

of the grids from the 48 hourly forecast files are read into memory and then organized into unique 295 

Iris data cubes containing data and metadata.  The Iris data cubes are then converted to zarrays that 296 
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are subdivided (chunked), encoded, and output into separate files identified by the parameter’s CF 297 

name and atmospheric level or layer (e.g., 2-m, 500 mb).  298 

 299 

As shown in Fig. 1, the 1799 x 1059 grid is subdivided into 96 chunks of size 150 x 150 based on 300 

recommendations for optimal data compression. It should be noted, the 12 chunks along the 301 

domain’s northern boundary contain data in only the southernmost nine rows. HRRR CONUS 302 

analysis (F00) files, whether for surface or isobaric files, are simply subdivided into 96 tiny 2-D 303 

files each containing one 150 x150 grid point array. HRRR CONUS forecast (F01-FXX) files are 304 

stored as 96 3-D cubes (XX,150,150) where the forecast duration, FXX, depends on HRRR version 305 

and time of day (Table 1). Although the data are chunked, the entire domain can still be accessed 306 

efficiently, in terms of memory and processing time, with the Zarr Python library. Processing time 307 

may be increased when parsing the entire domain, but accessing a single variable for many times 308 

using Zarr files is five times faster than attempting the same operation from the original GRIB2 309 

files.  310 

 311 

To consolidate the dataset, we chose the LZ4 compression codec, which is a lossless compression 312 

algorithm with the ability to quickly and efficiently compress large amounts of data (Collett 2020). 313 

The zarrays are encoded as 16-bit little-endian floats, with the exception of the surface pressure 314 

parameter, which requires 32-bit little-endian floats. We access the LZ4 algorithm using the 315 

Numcodecs library class, Blosc, which is a meta-compressor that imitates the utility of the built-316 

in Python library zlib. When using the LZ4 compression algorithm, additional modifications can 317 

be made to tailor the scheme for a particular use. We chose byte shuffling and a compression level 318 

of 9 within a range of 1-12 where levels 1 and 12 provide the fastest compression speed and highest 319 
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compression ratio, respectively. While other compression codecs have been shown to produce 320 

higher data compression ratios, their decompression speeds are much slower (Collett 2020). 321 

 322 

It is widely recognized that optimal use of cloud resources requires having data processing and 323 

analysis within the same compute environment as the data archive. The HRRR-Zarr files are 324 

created shortly after the entire model run is accessible as objects in the AWS GRIB2 S3 archive 325 

using AWS Elastic Cloud Compute resources in the same region (West-1) as our hrrrzarr bucket.  326 

Because of the time required to wait until all GRIB2 forecast fields are available, the most recent 327 

Zarr files are typically available 3 hours after the initialization time, e.g., 00 UTC analysis and 328 

forecast files are available by 03 UTC. This is dependent on the availability of the GRIB2 data in 329 

the AWS archive managed by NOAA BDP. 330 

 331 

Within the hrrrzarr S3 bucket, all files (or objects) are contained in a flat structure where the 332 

concept of folder or directory structure is provided by using shared name prefixes or suffixes for 333 

objects that mimic traditional directory structure. The zarr files derived from the surface and 334 

isobaric sets of HRRR GRIB2 files are stored with the prefixes “sfc/” and “prs/”, respectively (Fig. 335 

2). Model runs are accessible by date, using suffixes for analysis (anl.zarr) and forecast (fcst.zarr) 336 

files for each model run, e.g., files with the prefix sfc/20200907_12z_fcst.zarr/ were generated 337 

from the F01-F48 HRRR GRIB2 surface files initialized at 1200 UTC 7 Sept 2020. Prefixes follow 338 

then based on level (e.g., 700 mb/ or 10m_above_ground/) and CF naming conventions for 339 

variables a (e.g., TMP/ or UGRD/) with the final part of the file name being the chunk identifier.  340 

A full list of variables (abbreviation and full name) available in the HRRR v4 output and HRRR-341 

Zarr files is available online 342 
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(https://mesowest.utah.edu/html/hrrr/zarr_documentation/html/zarr_variables.html). Users can 343 

download the specific files of interest by accessing them by full name using web tools or from 344 

within programs in Python or other languages. 345 

 346 

III. HRRR-Zarr Applications and Discussion 347 

The HRRR-Zarr archive was developed with the intention of expanding its utility for ML and other 348 

applications that require high velocity file throughput. While demonstrating a full ML scenario is 349 

outside the scope here, this section illustrates examples of situations where the Zarr file format 350 

may be optimal in terms of efficiency and ease of use. We will use a high-impact meteorological 351 

event from September 2020 to showcase the utility of model data in Zarr format for not only 352 

research applications, but operational decision making and forecasting use cases as well. This 353 

section of the paper will be comprised of subsections that detail the event we are analyzing, 354 

followed by example use cases for HRRR model output in Zarr format. 355 

 356 

a) Labor Day Weather Event (7-9 September 2020) 357 

In the days leading up to the historic 2020 Labor Day weather event, forecasters in the western 358 

half of the United States were on high alert for the extratopical transition of Typhoon Julian as it 359 

began recurving poleward and easterward. When extratropical transitions occur, tropical cyclones 360 

may interact with the midlatitude flow such that the mid-latitude ridge-wave patterns amplify and 361 

high-impact weather occurs downstream (Bosart and Carr 1978; Cordeira et al. 2013; Feser et al. 362 

2015; Keller et al. 2019). In this case, Typhoon Julian did modify the midlatitude wave pattern by 363 

amplifying both the anticyclone over the Gulf of Alaska and the midlatitude cyclone situated over 364 

Western Canada. The rapid intensification of this ridge-trough pair ultimately produced far-365 
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reaching effects including historic windstorms and unrelenting wildfire spread (Fig. 3) in the 366 

Pacific Northwest, strong downslope winds in Utah and a snowstorm in Colorado. We focus here 367 

on the data and model forecasts pertaining to the events that occurred in Oregon, west of the 368 

Cascade Mountains. 369 

 370 

The Labor Day weather event was synoptically-driven and well-forecasted several days in 371 

advance. Prior to the trough arrival and onset of the downslope windstorm, the Pacific Northwest 372 

was experiencing extreme fire danger due to warm and dry conditions, with several fires already 373 

burning in Washington and Oregon. By 12 UTC on September 7, a thermal trough was situated 374 

over coastal Oregon with a tightening pressure gradient orthogonal to it. These conditions are 375 

indicative of impending strong northeast and easterly winds in western Oregon. As forecasted, 376 

strong easterly winds arrived on the western side of the Oregon Cascades by 00 UTC on September 377 

8. In a near worst case scenario, wind gusts along the western slopes of the Oregon Cascades 378 

ignited new fires (Riverside Fire) and significantly intensified existing wildfires (Beechie Creek). 379 

For nearly a week after the onset of the downslope winds, persistent easterly flow propagated 380 

wildfire smoke west, resulting in historic PM2.5 measurements in excess of 500 micrograms per 381 

cubic meter in Portland, Salem, and Eugene, OR (Green 2020). Suppression efforts were minimal 382 

given the steep terrain surrounding the wildfires, making it too dangerous for fire crews to 383 

extinguish them safely. Ultimately, the Riverside and Beechie Creek fires burned over 1,300 km2. 384 

The following subsections use the data during this weather event to illustrate use cases for future 385 

ML applications for operational forecasting and research. 386 

 387 

 388 
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b) Forecast Time Series for a Specific Location  389 

Time series are one of the most straightforward and widely understood visualizations used to show 390 

how a given parameter evolves over a period. Scientists and consumers alike are exposed to time 391 

series every day when looking at stock market trends, weather forecasts, and health tracking 392 

applications. Despite their inherent simplicity, requiring only time and a dependent variable as 393 

input, they can be time consuming and challenging to create when starting from data files that 394 

represent a single time in space for millions of locations, as is the case with NWP model output in 395 

GRIB2 format. As discussed earlier, a HRRR GRIB2 file of size O(100 MB) contains hundreds of 396 

two-dimensional forecast fields for a single valid time. Retrieving, storing, and unpacking 18, 36, 397 

or 48 such files up to 24 times a day is beyond what many users can deal with in terms of compute 398 

power and storage.  399 

 400 

Efficient access to model output as time series for specific locations was a key objective leading 401 

to the structure and organization of the HRRR-Zarr format. While identical time series can be 402 

constructed from both GRIB2 and Zarr file formats, the process and requirements are quite 403 

different. As discussed in the Data and Methods section, the tiny two-dimensional analysis HRRR-404 

Zarr files can be easily accessed to estimate prior conditions at a location while the three-405 

dimensional forecast HRRR-Zarr files contain all forecast hours from a model run to assess how 406 

future conditions at that location may unfold.   407 

 408 

To illustrate the utility of the Zarr format for this use case, we plot time series of forecast wind 409 

gusts from the 00, 06, 12, and 18 UTC HRRR model runs for a single point from 12 UTC 6 Sept-410 

18 UTC 8 Sept 2020 (Fig. 3). For this case, we chose the HRRR grid point nearest to the Horse 411 
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Creek (Station ID: HSFO3) Remote Automated Weather Station (44.940806oN, 122.400806oW) 412 

located downwind of the Beechie Creek Fire.  However, since HSFO3 is located in a clearing 413 

within a densely forested region, the wind reports from this location tended to be lower than what 414 

was evident by the rapid advance of the fire line in that region. To create this visualization of 415 

forecasted wind gust, ten small chunks of data (one from each model run) totaling ~ 10 MB were 416 

retrieved from the hrrrzarr bucket to obtain all necessary model output. In contrast, 360 GRIB2 417 

files totaling ~54 GB would have been needed to replicate this process or else values within byte 418 

ranges in each of those files would need to be determined and accessed. The single access point to 419 

all forecast hours in a model run reduces processing time and optimizes workflows for applications 420 

such as creating training datasets for a ML model.  421 

 422 

Plotting sequentially the model runs available every hour creates a time-lagged ensemble (TLE) 423 

for a given valid time. A TLE from HRRR output can provide useful diagnostics for evaluating 424 

the uncertainty or spread in values among recent forecasts for which the most recent forecast 425 

provides only deterministic guidance (Xu et al. 2019). TLEs with sufficient lead time to be 426 

potentially useful operationally can be constructed using a set of sequential HRRR forecasts, with 427 

each model run treated as an ensemble member. In this case, we use F06-F18 forecasts from all 428 

model runs initialized from 06 UTC 6 September – 06 UTC 9 September to calculate statistics at 429 

valid times from 00 UTC 7 September – 12 UTC 9 September. Diagnostic values such as median, 430 

minimum, and maximum forecasted wind gusts provide a simple evaluation of the model’s 431 

uncertainty as the event unfolded (Fig. 4). The unrepresentativeness of the lighter HSFO3 432 

observations relative to that analyzed and forecasted by the HRRR is evident in Fig. 4. 433 

 434 
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c) Spatial Analysis of Forecast Data 435 

Many applications requiring HRRR model output need only a fraction of the 1.9 million grid points 436 

in the HRRR CONUS domain. Hence, users typically implement methods to subset areas of 437 

interest from the complete grids. Accessing one or more HRRR-Zarr chunks of size 450 km2 may 438 

help simplify that process for many local applications while adjacent chunks can be stitched 439 

together to evaluate conditions for regional scales. 440 

 441 

Model analyses are often used as proxies for observations, especially in areas of complex terrain 442 

where in-situ measurements may not be available or unrepresentative of prevailing conditions 443 

(e.g., Fig. 5). As a further example, we use the HRRR-Zarr analysis files to determine the onset 444 

time of wind gusts exceeding 10 m s-1 for every point within the Western Oregon chunk 445 

encompassing the large fires underway on 7-8 September 2020 (Fig. 6). This wind gust threshold 446 

was chosen based on criteria commonly used for red flag warnings issued by the National Weather 447 

Service. The filled contours in Fig. 6 depict the approximate onset time of the downslope 448 

windstorm event across western Oregon, with the event beginning along the highest reaches of the 449 

Cascade Range and then progressing westward later. Such diagnostics can then be related to 450 

available wind observations and damage reports to help evaluate the ability of the HRRR model 451 

to forecast the temporal evolution of the event. 452 

 453 

Building on the TLE concept available from consecutive HRRR forecasts, we calculate the 454 

probability of a HRRR wind gust forecast exceeding 10 m s-1 at a given time during the downslope 455 

windstorm for all grid points within the Western Oregon chunk. The 21 model runs (F01-F18, F24, 456 

F30, and F36) available from forecasts valid at 00 and 06 UTC 8 September 2020 are used to 457 
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calculate the fraction of wind gusts forecasts exceeding that threshold in this subregion (Fig. 7). 458 

Using such probabilistic guidance as the event developed, forecasters might have higher 459 

confidence that the HRRR model forecasts issued earlier are being confirmed by more recent 460 

forecasts as the downslope winds continued. For a single valid time, this metric utilized wind gust 461 

values within 20 HRRR-Zarr files, which required less than 20 MB of storage capacity, an amount 462 

easily manageable in computer memory. Actual forecast applications might limit the TLE 463 

members to those available at least 12 hours in advance, e.g., forecasts with lead times from F12-464 

F18 and those available every 6 h out to 48 h from the HRRRv4 model output now available. 465 

 466 

d) Empirical Cumulative Distributions 467 

Empirical cumulative distributions of model data and observations are often utilized to better 468 

understand the range of possible values for a given parameter as a function of time and/or location 469 

and can be used to correct for model biases (Blaylock et al. 2018, Gowan and Horel 2020). If 470 

enough data are available over an adequate period of time, these cumulative distributions can be 471 

thought of as a climatology and used for comparison to a parameter at an equivalent time or 472 

location in order to recognize conditions that are likely anomalous. Creating distributions from 473 

observations or model output typically requires data from thousands of input times and files for 474 

the information to be considered useful. This can be a daunting and time-consuming task since a 475 

large amount of storage and compute power are needed to efficiently process thousands of GRIB2 476 

data files. 477 

 478 

Blaylock et al. (2018) presented an approach to compute empirical cumulative distributions of 479 

HRRR model output at all 1.9 million grid points that required harnessing the Open Science Grid 480 
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(OSG). The OSG allows users to send jobs that are repetitive in nature (e.g., statistical calculations 481 

using large datasets, data mining, etc.) to unused or idle computing resources at hundreds of 482 

locations within the OSG consortium, reducing the overall processing time for a given workflow. 483 

The OSG method enables large amounts of data to be simultaneously processed, but its 484 

complexities can be a drawback for most users without a thorough understanding of the system. 485 

Continually updating cumulative distributions using this approach is also difficult to sustain. 486 

 487 

A quick and efficient method is illustrated here to generate empirical cumulative distributions of 488 

atmospheric parameters from the HRRR-Zarr archive. To assess the anomalous nature of the 489 

downslope wind event during September 2020 in northern Oregon, we generated cumulative 490 

distributions of wind gust data for each grid point in that region by accessing all HRRR hourly 491 

analyses during the month of September during the preceding years 2016-2019. Each grid point’s 492 

cumulative distribution is derived then from 2,880 wind gust values, one from every hourly HRRR 493 

analysis during the four calendar months. A range of percentiles can be derived from the empirical 494 

distributions to estimate normal and above normal wind gusts in this area during the month of 495 

September. 496 

 497 

As expected, the highest wind gusts evident from the 95th percentile values during September 498 

2016-2019 tend to occur over the Cascade Range and offshore (Fig. 8). Using this four-year 499 

distribution, we then compare the 95th percentile values to the analysis and F06, F12, and F18 500 

forecasts valid at 06 UTC on 8 September 2020 (Fig. 9). To emphasize the severity of the event 501 

across the region, the excess magnitude of wind gusts values above the 95th percentile are shown. 502 

Comparing these forecasts and analysis to the cumulative distribution is a simple way to show how 503 
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anomalous this event was, with wind gusts exceeding the 95th percentile values by 15-30 m s-1 504 

over the Cascade and portions of the Coast Ranges and extending into sections of the Willamette 505 

Valley.  506 

 507 

The empirical distributions computed using four months of data for a single variable and chunk 508 

required less than a minute on a typical workstation. We compare this to the method used by 509 

Blaylock et al. (2018), which calculated empirical cumulative distributions for all HRRR model 510 

grid points. These distributions were then used to output wind speed values at 19 percentiles at all 511 

HRRR grid points for each day of the year. As previously stated, this was a rigorous and time-512 

intensive endeavor that required an enormous amount of model output. Ultimately, calculating 513 

these distributions resulted in the need to store 6,935 additional files containing the percentiles at 514 

each of the 1.9 million HRRR grid points.  515 

 516 

Calculating empirical cumulative distributions, as well as other large-scale statistical metrics, with 517 

data in Zarr format gives the end user the ability to continually update their statistics as new 518 

information is received. This method especially benefits users who are interested in time-sensitive 519 

datasets, like those from numerical weather prediction models. Using the HRRR-Zarr method, a 520 

user will be able to efficiently compute statistics that are tailored to a specific application or 521 

workflow, without dealing with the overhead of many GB of excess data. 522 

 523 

IV. Summary 524 

Vast amounts of output produced by numerical weather prediction models are accessed and 525 

processed every day for applications ranging from operational forecasting to research and machine 526 
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learning. As advancements in technology allow for finer time and spatial resolution model output, 527 

users may struggle to keep up even if they are only interested in accessing a small fraction of the 528 

data available. Much of this model output is currently available in GRIB2-formatted files 529 

containing hundreds of two-dimensional variable fields for a single valid time. Despite the highly 530 

compressible nature of GRIB2 files, they are often O(100 MB) each, making high-volume 531 

input/output applications challenging due to the memory and compute resources needed to parse 532 

them.  533 

 534 

We present an approach that reorganizes HRRR analyses (F00) from the surface and isobaric 535 

HRRR file types into tiny two-dimensional (150, 150) files in Zarr format for each variable/vertical 536 

level combination and 96 subdomains of the CONUS grid. HRRR forecasts from the surface and 537 

isobaric files are stored as data cubes (XX, 150,150) where the forecast dimension XX is either 48 538 

for initialization times of 00, 06, 12, and 18 UTC or 18 for all other hours. We create the Zarr 539 

formatted files from the HRRR GRIB2 files provided by the NOAA BDP with support provided 540 

by the Amazon Sustainability Data Initiative. Our supplementary S3 bucket, hrrrzarr, is publicly 541 

accessible as part of the Amazon Initiative.  542 

 543 

The structure of the HRRR-Zarr files was designed to allow users the flexibility to access only the 544 

data they need through selecting subdomains and parameters of interest without the overhead of 545 

memory and processing requirements that comes from accessing numerous large GRIB2 files. 546 

Users may retrieve the analysis files needed to diagnose prior conditions or retrieve the forecast 547 

files in combination with the analysis files to evaluate future conditions or validate prior forecasts.  548 

 549 
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Using a high-impact weather event from September 2020, we present workflow examples for 550 

analyzing large amounts of sensible weather parameters from the HRRR-Zarr data archive: 551 

assembling time series for a specific grid point of forecast conditions over a range of model runs; 552 

examining similarities and differences among samples of model forecasts for the same valid times 553 

from successive model runs; calculating empirical cumulative distributions over multiyear periods; 554 

and detecting forecasts of extreme conditions relative to conditions during other recent years. The 555 

small, compressed chunks of data are ideal for high-throughput workflows where minimizing 556 

processing time or accessing files corresponding to many different valid times is critical. However, 557 

relying on the GRIB2 HRRR files accessible from AWS and Google remains the best option for 558 

initializing high resolution model simulations that require many variables at multiple levels over a 559 

limited sample of valid times.  560 

 561 

The GRIB2-to-Zarr conversion of the HRRR model archive is only one of the many research 562 

endeavors that aim to make model data more accessible to end users. As technology and 563 

computational power continues to advance, the inevitable path of numerical weather prediction 564 

models is towards probabilistic guidance from ensemble forecasting systems (Frogner et al. 2019; 565 

Schwartz et al. 2019). Ensemble models introduce an additional data dimension (number of 566 

members), which compounds the volume of data produced by each model run. Plans are being 567 

developed for GRIB2-to-Zarr conversion of model output from the NOAA Global Ensemble 568 

Forecast System (GEFS), which are also available through the NOAA Big Data Program and the 569 

Amazon Sustainability Initiative (https://registry.opendata.aws/noaa-gefs/; 570 

https://registry.opendata.aws/noaa-gefs-reforecast/). Great utilization of Zarr within the broader 571 

community will likely follow if the Open Geospatial Consortium adopts Zarr as an official 572 

https://registry.opendata.aws/noaa-gefs/
https://registry.opendata.aws/noaa-gefs-reforecast/
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community data standard.  That will likely lead to diverse efforts to evaluate Zarr in the cloud 573 

environment relevant to users who want the flexibility to customize a Zarr file structure for their 574 

own purposes. Utilizing the Zarr format as an alternative file structure for the vast amount of 575 

numerical weather prediction output may help expand its already wide reach to data scientists in 576 

other disciplines, while optimizing workflows for end users throughout the weather enterprise. 577 
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HRRR 

CONUS 

Forecast Length  

for Initialization Times 
Number of GRIB2 Output Files 

v. First Date 0, 6, 12, 18 UTC Other Hours Surface Pressure Native Subhourly 

1 9/30/2014 15 15 102 659 778 26 

2 8/23/2016 18 18 135 687 1110 41 

3 7/12/2018 36 18 151 701 1126 44 

4 12/2/2020 48 18 173 711 1136 196 

830 

Table 1: Selected Characteristics of HRRR CONUS Versions from 2014-present available from 831 

IaaS cloud providers. 832 

833 



 39 

HRRR CONUS File Type 

v. First Date Analyses Forecasts 

2 8/23/2016 Surface N/A 

3 7/12/2018 Surface, Isobaric Surface 

4 12/2/2020 Surface, Isobaric Surface 

 834 

Table 2: Availability of Zarr analysis and forecast files (as of July 2021) in AWS S3 for surface 835 

and isobaric file types.  836 

  837 



 40 

 838 

Figure 1. HRRR domain (1799 x 1059 grid points) divided into 96 chunks of size 150 x 150 grid 839 

points with the northernmost 12 chunks containing 9 rows of non-NaN data. 840 

  841 



 41 

 842 

Figure 2. Files within the AWS S3 bucket hrrrzarr are named to emulate a hierarchical data 843 

structure. 844 

  845 



 42 

 846 

Figure 3. Boundaries of active fires (red outlines), estimated using VIIRS 375 m thermal 847 

anomalies, and smoke from wildfires in the Pacific Northwest on 9 September 2020 (source: 848 

https://worldview.earthdata.nasa.gov).  849 

  850 

https://worldview.earthdata.nasa.gov/


43 

851 

Figure 4. Wind gusts (m s-1) from HSFO3 (blue dots) and HRRR wind gust forecasts near HSFO3 852 

colored corresponding to initialization time.  853 

854 



 44 

   855 

Figure 5. Wind gusts (m s-1) from HSFO3 ( blue dots),  HRRR analyses (red line) and median of 856 

F06-F18 forecasts (dashed black line) near HFSO3 for valid times from 00 UTC 7 Sept – 12 UTC 857 

9 Sept. The shading indicates the range between the maximum and minimum wind gusts from the 858 

F06-F18 Time-Lagged Ensemble.  859 

  860 



45 

861 

Figure 6. Time of first HRRR analysis (F00) with a wind gust exceeding 10 m s-1 (shaded according 862 

to the scale) at each grid point for model runs initialized between 12 UTC 7 September – 03 UTC 863 

9 September.  864 

865 



46 

866 

Figure 7. Fraction of HRRR wind gust forecasts exceeding 10 m s-1 at valid times 00 UTC (left) 867 

and 06 UTC (right) on 8 September 2020. Contours correspond to probability values (0-1) and are 868 

shaded according to the scale. 869 

870 
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 871 

Figure 8. 95th percentile wind gust values (m s-1; shaded according to the scale) calculated at each 872 

grid point from empirical cumulative distributions derived from HRRR analyses during September 873 

2016-2019. 874 
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48 

876 

Figure 9. Wind speed (m s-1; shaded according to scale) in excess of the 95th percentile wind gust 877 

values at 12 UTC 8 September 2020. Subplots correspond to the verifying analysis (upper left) 878 

and F12, F18, and F24 forecasts valid at that time. 879 

880 




